Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes.
نویسندگان
چکیده
Humans and other animals demonstrate the ability to perceive and respond to temporally relevant information with characteristic behavioral properties. For example, the response time distributions in peak-interval timing tasks are well described by Gaussian functions, and superimpose when scaled by the criterion duration. This superimposition has been referred to as the scalar property and results from the fact that the standard deviation of a temporal estimate is proportional to the duration being timed. Various psychological models have been proposed to account for such responding. These models vary in their success in predicting the temporal control of behavior as well as in the neurobiological feasibility of the mechanisms they postulate. A review of the major interval timing models reveals that no current model is successful on both counts. The neurobiological properties of the basal ganglia, an area known to be necessary for interval timing and motor control, suggests that this set of structures act as a coincidence detector of cortical and thalamic input. The hypothesized functioning of the basal ganglia is similar to the mechanisms proposed in the beat frequency timing model [R.C. Miall, Neural Computation 1 (1989) 359-371], leading to a reevaluation of its capabilities in terms of behavioral prediction. By implementing a probabilistic firing rule, a dynamic response threshold, and adding variance to a number of its components, simulations of the striatal beat frequency model were able to produce output that is functionally equivalent to the expected behavioral response form of peak-interval timing procedures.
منابع مشابه
Cortico-striatal representation of time in animals and humans.
Interval timing in the seconds-to-minutes range is crucial to learning, memory, and decision-making. Recent findings argue for the involvement of cortico-striatal circuits that are optimized by the dopaminergic modulation of oscillatory activity and lateral connectivity at the level of cortico-striatal inputs. Striatal medium spiny neurons are proposed to detect the coincident activity of speci...
متن کاملNeural Coding Strategies in Cortico-Striatal Circuits Subserving Interval Timing
Neural Coding Strategies in Cortico-Striatal Circuits Subserving Interval Timing by
متن کاملPathophysiological distortions in time perception and timed performance.
Distortions in time perception and timed performance are presented by a number of different neurological and psychiatric conditions (e.g. Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder and autism). As a consequence, the primary focus of this review is on factors that define or produce systematic changes in the attention, clock, memory and decision stages of tempora...
متن کاملExploring the 4th Dimension: Hippocampus, Time, and Memory Revisited
Accurate and reliable timing is an essential component of nearly every purposeful behavior. Just as the brain contains mechanisms to track and orient the body in space, so too must it be able to orient itself in time. Coincidence detection – the integration of simultaneous activation of multiple inputs – is a proposed solution to the question of how the brain tracks the duration of events in th...
متن کاملTaxonomies of Timing: Where Does the Cerebellum Fit In?
Recent models of interval timing have emphasized local, modality-specific processes or a core network centered on a cortico-thalamic-striatal circuit, leaving the role of the cerebellum unclear. We examine this issue, using current taxonomies of timing as a guide to review the association of the cerebellum in motor and perceptual tasks in which timing information is explicit or implicit. Eviden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research. Cognitive brain research
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2004